

2	$h=30$ with clear correct steps and reasons As above but missing one reason or working unclear Or fully correct method, with full reasons, but one arithmetic slip	$5-$	eg ABT = BAT $=75$ Alt(ernate) seg(ment) (AST) $h=180-75-75$ Angles in (isosceles) triangle [$\left.=180^{\circ}\right]$ Any correct angle calculation, clearly seen with reason	$2-$For lower mark $-h=30$ is reached with more than one reason missing or one reason missing and working unclear Or fully correct method, with one reason missing, and one arithmetic slip
For lower mark - one step seen without reason or a 'correct' reason given soi with an incorrect conclusion in that step May be on diagram				
No relevant working	0			

3	(b)	$\begin{aligned} & 4 \sqrt{5} \\ & 4 \sqrt{3} \end{aligned}$	2 3	M1 for $\sqrt{16} \times \sqrt{5}$ or $\sqrt{16 \times 5}$ or $\sqrt{4} \times \sqrt{20}$ or $\sqrt{4 \times 20}$ or $2 \sqrt{20}$ or $4 \times \sqrt{5}$ B2 for $\frac{12 \sqrt{3}}{3}$ isw or $\frac{4 \sqrt{3}}{1}$ or or $4 \times \sqrt{3}$ Or M1 for $\frac{12}{\sqrt{3}} \times \frac{\sqrt{3}}{\sqrt{3}}$ or $\frac{12 \sqrt{3}}{\sqrt{9}}$ or $\sqrt{48}$	Condone extra \times signs for M mark eg $2 \times \sqrt{20}$ Condone extra \times signs for B and M marks eg $\frac{4 \times \sqrt{3}}{1}$ scores B2

$\left.\begin{array}{|l|l|l|l|l|l|}\hline \mathbf{4} & \text { (a } & \begin{array}{l}p=86^{\circ} \\ \text { Cyclic quadrilateral }\end{array} & \mathbf{1} \\ 1\end{array}\right)$

5			15.9 to 16	$\mathbf{3}$	M2 for $\frac{304}{360} \times \pi \times 6$ oe

6			63 Alt(ernate) $\operatorname{Seg}($ ment theorem $)$	1		

| $\mathbf{8}$ | $\mathbf{(a}$ | 54
 Opp(osite) angles (in a) cyclic
 quad(rilateral) add to 180° | 1 | Both marks are independent |
| :--- | :--- | :--- | :--- | :---: | :--- | :--- |
| | (b) | 81 | 'Add to 180° ' can be implied (eg by correct
 answer) but not by 126° | Condone reasonable
 abbreviations and poor spelling |

